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Decoding and perturbing decision states in 
real time

Diogo Peixoto1,2,3,17 ✉, Jessica R. Verhein3,4,5,17 ✉, Roozbeh Kiani6, Jonathan C. Kao3,7,8,9, 
Paul Nuyujukian3,7,10,11,12, Chandramouli Chandrasekaran3,7,13,14,15, Julian Brown1,3, Sania Fong1,3, 
Stephen I. Ryu7,16, Krishna V. Shenoy1,3,7,10,12,13 & William T. Newsome1,3,12 ✉

In dynamic environments, subjects often integrate multiple samples of a signal and 
combine them to reach a categorical judgment1. The process of deliberation can be 
described by a time-varying decision variable (DV), decoded from neural population 
activity, that predicts a subject’s upcoming decision2. Within single trials, however, 
there are large moment-to-moment fluctuations in the DV, the behavioural significance 
of which is unclear. Here, using real-time, neural feedback control of stimulus duration, 
we show that within-trial DV fluctuations, decoded from motor cortex, are tightly 
linked to decision state in macaques, predicting behavioural choices substantially 
better than the condition-averaged DV or the visual stimulus alone. Furthermore, 
robust changes in DV sign have the statistical regularities expected from behavioural 
studies of changes of mind3. Probing the decision process on single trials with weak 
stimulus pulses, we find evidence for time-varying absorbing decision bounds, 
enabling us to distinguish between specific models of decision making.

When making a categorical decision about a noisy stimulus, subjects 
commonly fluctuate between levels of commitment to a choice before 
reporting a decision. In some instances, the fluctuations are sufficiently 
strong to lead to a change of mind (CoM)2–8. Because these within-trial 
fluctuations are different from trial to trial and not necessarily tied 
to an external event or stimulus feature, they can only be captured 
using a moment-to-moment neural readout of the decision state on 
single trials.

To obtain such a readout, we decoded an instantaneous DV in real 
time from neural population activity in dorsal premotor cortex (PMd) 
and M1 while two monkeys performed a motion-discrimination task9,10 
(Fig. 1a, Supplementary Methods 3; all methods for this paper are pro-
vided in the Supplementary Information). We used a linear decoder, 
trained on previously obtained data, on multielectrode spiking data 
from the preceding 50–100 ms, updated every 10 ms throughout each 
trial (Fig. 1b, Supplementary Methods 9, 10). The sign of the DV indi-
cated which choice was predicted, enabling calculation of the decoder’s 
prediction accuracy. The magnitude of the DV reflected the model’s 
prediction confidence in units of log odds for one versus the other 
decision (Supplementary Methods 9). Note that the DV defined here 
encompasses all choice-predictive signals that can be decoded from 
neural activity11, including but not limited to accumulated evidence as 
posited in classical models.

We demonstrate that this real-time DV can predict choices on single 
trials beginning approximately 250 ms after visual stimulus onset, 

and that prediction accuracy increases throughout the course of the 
trial, consistent with previous offline observations2. Moreover, we 
employ closed-loop, neurally contingent control over stimulus tim-
ing to directly probe the behavioural significance of within-trial DV 
fluctuations. We quantify the behavioural effects of previously covert 
DV variations (1) as a function of time and instantaneous DV (experi-
ment 1), (2) during CoM-like DV fluctuations (experiment 2), and (3) in 
response to subthreshold stimulus pulses (experiment 3). Using this 
approach, we validate the behavioural relevance and computational 
implications of intra-trial DV fluctuations.

Real-time choice decoding
Psychophysical performance on the discrimination task11 was better 
for higher coherences and stimuli of longer duration (Extended Data 
Fig. 1a), as expected from previous studies9,12. We first measured the 
accuracy of our real-time decoder in predicting monkeys’ choices as 
a function of time during the trial. The average prediction accuracy 
started near chance during the targets epoch (Fig. 1c, Extended Data 
Fig. 1b). During stimulus presentation, average prediction accuracy 
quickly departed from baseline, rising monotonically to 99% correct 
for the longest stimulus presentations for monkey H and 98% for mon-
key F. Moreover, for all 4 epochs considered, the average accuracy of 
our real-time readout was within ±2% of an equivalent offline decoder 
(Extended Data Figs. 2a–d, Supplementary Methods 12.3; comparisons 
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between PMd and M1 in monkey H and for decoders trained in different 
epochs are presented in Extended Data Figs. 3, 4). Thus, our real-time 
decoder reproduces the prediction accuracy of our own offline analyses 
and of an analogous study of the prearcuate cortex2.

Our real-time decoder also reproduced the average temporal dynam-
ics and coherence dependence expected of the DV: it started at around 
0 at dots onset, separated by choice after about 200 ms, and rose (or 
fell) faster for higher coherence trials (Fig. 1d, Extended Data Fig. 1c). 
As expected from previous results13, prediction accuracy was higher 
for correct trials than error trials (Extended Data Fig. 5) at constant 
stimulus coherence.

Our decoding method yielded stable performance across multiple 
days, justifying combination of data across sessions (Extended Data 
Fig. 6).

DV fluctuations track evolving decisions
We often observed large fluctuations (over 3 natural log units) in 
the DV on individual trials, even within single epochs (Fig. 1e). If 
moment-to-moment fluctuations in DV reflect fluctuations in the 
animal’s decision state, we expect larger absolute values of DV to be 
associated with stronger preference for one of the two choices, and 
hence higher prediction accuracy were a decision to be required at a 
given time during a single trial.

Because we decoded and tracked the DV in real time, we were able 
to test this expectation by terminating the visual stimulus in a neurally 
contingent manner and probing both neural activity and behaviour 
with high precision and negligible latency (less than 34 ms; Supple-
mentary Methods 11.4). In the first closed-loop test (experiment 1), 

we imposed virtual decision boundaries at specific DV values that, if 
reached, triggered stimulus termination (Fig. 2a), prompting the sub-
ject to immediately report its decision (in trials with no delay period). 
For example, Fig. 2b shows 22 DV traces that reached a fixed DV bound-
ary of magnitude 3 (tolerance of ±0.25 DV units), leading to stimulus 
termination and the subject’s decision. In this manner, we obtained a 
direct mapping between the nearly instantaneous readout of decision 
state and the likelihood of a given choice.

We systematically swept boundary heights from 0.5–5 DV units in 
increments of 0.5 (1 DV unit corresponds to an increase of 2.718 in the 
likelihood ratio of choosing one target over the other). Figure 2c shows 
that prediction accuracy increases monotonically with the DV magni-
tude at termination, as expected. Using only 100 ms of data to estimate 
the terminating DV, the observed likelihood of a given choice (solid 
trace) differed from that predicted by the logistic function (dashed 
trace) by 1.7% for monkey H and by 1.9% for monkey F (mean absolute 
error; Extended Data Fig. 1d). Notably, prediction accuracy falls sys-
tematically as the time window for calculating DV is moved further 
than 100 ms into the past (Extended Data Fig. 1g). Thus, very recent 
neural population activity better reflects the current decision state 
than earlier time intervals. In further analyses, we performed the cal-
culation in Fig. 2c on subsets of the aggregated data: high versus low 
stimulus coherences and short- versus long-duration trials. The result 
in Fig. 2c is robust across trial duration, but differs modestly for high 
versus low coherences (Extended Data Fig. 1e, f), revealing a significant 
effect of DV derivative on prediction accuracy (Supplementary Note 1, 
Supplementary Table 2).

Overall, these results show that moment-by-moment fluctuations 
in PMd and M1 neural population activity captured by our decoding 
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Fig. 1 | Real-time readout of decision states during a motion discrimination 
task. a, Motion discrimination task. Task design, single trial (described further 
in Supplementary Methods 3). Decision states were continuously decoded 
during all epochs of the trial. Three different decoders were used during 
different trial epochs (coloured boxes; Supplementary Methods 9). We focused 
primarily on the dots epoch in this study. b, Real-time, closed-loop setup. 
Neural activity was continuously recorded, processed and decoded 
(Supplementary Methods 7 and 10). The resulting real-time DV could be used to 
stop the stimulus presentation in a neurally contingent manner (red arrow), 
closing the loop in the experiment. c, Choice prediction accuracy from 
real-time, open-loop readout. Black traces, mean (± s.e.m.) prediction accuracy 

(Supplementary Methods 9, 10) over time, pooled across monkeys (calculated 
for each session and averaged across sessions; 32,294 trials total). d, Average 
DV traces during dots period. Top, mean DV for right (red) and left (blue) 
choices, pooled across monkeys. Bottom, mean DV sorted by choice and 
stimulus coherence (correct trials only), pooled across monkeys. Darker 
shades correspond to higher coherences (Supplementary Methods 4). Red 
(blue) bars indicate time points for which coherence was a significant regressor 
of DV for right (or left) choices, respectively (correct trials only; linear 
regression, P < 10−5 uncorrected, two-sided t-statistic). e, Example single-trial 
DV traces, open-loop trials (monkey H).
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model are indeed reflective of a fluctuating internal decision state—
fluctuations that have been covert and thus uninterpretable until now.

To quantify how much additional predictive power is gained from 
the real-time DV readout compared with (1) the stimulus itself, and (2) 
the average DV for a given stimulus coherence and time-in-trial, we 
built three nested logistic regression models, each using an additional 
regressor (Supplementary Methods 12.1). The first model, using only 
stimulus information (motion energy) plus an intercept, correctly 
predicted choice in 74.5% of trials for monkey H and 71.5% of trials for 
monkey F (Supplementary Table 1). Adding the average DV for the cor-
responding stimulus coherence and time in trial to this model increased 
prediction accuracy by 2–3%. By contrast, adding the single-trial DV 
at termination as a third regressor increased prediction accuracy by 
more than 10%. This effect is substantial for lower-coherence trials 
(Fig. 2d, Extended Data Fig. 1h). Second, as a complementary analysis, 
we built four logistic regression models, three using only one of the 
above regressors (Supplementary Methods 12.1) and a fourth using 
signed motion coherence. Not only was single trial DV by itself 10% 
more accurate than any other regressor, it was also only 1–2.5% less 
predictive than the model with all 3 regressors (Supplementary Table 1).

We emphasize that our decoded DV is model based and thus only a 
proxy for the actual decision state in the brain. We are sampling from 
a relatively small number of neurons in only one brain region, over 
relatively short time bins, and the underlying mechanism is unlikely 
to be strictly linear. Despite these caveats, our ability to predict choice 
likelihood within a small margin of error confirms that DV is a reliable 
proxy for decision state.

Neurally detected changes of mind
Validation of the mapping between DV and choice likelihood (Fig. 2c) 
enabled us to perform a new closed-loop experiment (experiment 2) 

aimed at capturing robust DV fluctuations in which the sign of the DV 
changed mid-trial, suggestive of a behavioural CoM (Fig. 3a, b). We 
established neural criteria for a candidate CoM that, when met in real 
time, led to stimulus termination and the monkey’s decision (Fig. 3a, 
Supplementary Methods 11.2).

We conceptually divide a CoM trial into two segments—the initial 
preference before the DV sign change, and the final (opposite) prefer-
ence that leads to the observed choice. The interpretation of the initial 
preference relies on the mapping between the DV and choice likelihood 
obtained from experiment 1. The observed choices allow validation of 
the neural estimate of the final decision state in the second segment 
(Extended Data Fig. 7a, Supplementary Note 2).

For monkey F, the relationship between prediction accuracy and DV 
at stimulus termination was very similar for CoM and non-CoM trials 
(compare Extended Data Fig. 1d, right with Extended Data Fig. 7a, right; 
mean error between predicted and observed choice likelihood: 1.9% 
for non-CoM trials and 3.8% for CoM trials). This relationship was also 
lawful and monotonic for monkey H, although observed prediction 
accuracy was lower than expected from the logistic model (compare 
Extended Data Fig. 1d, left with Extended Data Fig. 7a, left; mean error 
between predicted and observed choice likelihood: 1.7% for non-CoM 
trials and 9.3% for CoM trials), suggesting that in addition to the meas-
ured DV at stimulus termination, the decisions of monkey H were influ-
enced by some aspect of the DV trajectory history specifically related to 
the CoM (Extended Data Fig. 7a, Supplementary Note 3, Supplementary 
Table 3, Supplementary Methods 12.4).

We combined all 985 CoMs detected in monkey H (and all 1,727 
CoMs detected in monkey F) to assess whether our neurally detected 
CoMs conformed to three statistical regularities of CoMs established 
in previous psychophysical3 and electrophysiological2 studies: (1) 
CoMs are more frequent for low- and intermediate-coherence trials 
compared with high-coherence trials; (2) CoMs are more likely to 
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Fig. 2 | Choice likelihood, accurately decoded in real-time using only 
100 ms of neural data. a, Virtual boundary experiment schematic. Virtual 
boundaries for DV magnitude (green shading) were imposed and if reached, 
triggered the termination of the stimulus (Supplementary Methods 11.1). The 
subject then immediately reported its decision. A minimum stimulus duration 
was imposed (grey shading). Grey traces, cartoons of trials for which the 
boundary was not reached. Red (blue) traces, cartoons of terminated trials for 
which the decoder predicted right (left) choices. b, Example trials during the 
virtual boundary experiment (monkey H). Real-time DV time courses for 
example trials terminated using boundaries set at ±3 DV units. c, Prediction 

accuracy as a function of DV magnitude. Blue trace and black symbols, all 5,876 
trials from both monkeys during the virtual boundary experiment. Mean 
prediction accuracy ± s.e.m. and median DV magnitude were calculated and 
plotted separately for each of six DV quantiles. Dashed black line, predicted 
accuracy from log-odds equation used to fit the DV model; red dashed line, 
chance level. d, Single trial DVs substantially increase prediction accuracy. 
Prediction accuracy as function of coherence for three nested models with 
successively more regressors (Supplementary Methods 12.1). ME, motion 
energy.
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be corrective than erroneous; and (3) CoMs are more frequent early 
in the trial than later in the trial. All three predicted regularities are 
true in our real-time neural detection data (Fig. 3c–e, Extended Data 
Fig. 7b–d).

We also discovered a new regularity associated with CoMs: the aver-
age time of zero crossing was negatively correlated with stimulus coher-
ence (Fig. 3f, Extended Data Fig. 7e). This observation probably results 
from the stronger corrective effect of higher-coherence stimuli (Fig. 3d, 
Extended Data Fig. 7c).

Of note, the statistical regularities in the neural CoMs were not fore-
ordained since our decoder was trained on choices made at the end of 
trials, completely agnostic to rare CoMs during any given trial.

Probing decisions with motion pulses
In a final closed-loop experiment (experiment 3), we tested whether 
neural and behavioural responses to brief pulses of additional 
motion information varied with DV and/or the time of pulse onset. 
Decision-making models involving accumulation of evidence to a 
bound14–17 predict that termination of deliberation and commitment 
to a choice become more likely at high DV values2,3,9,17,18, resulting in 
decreased sensitivity to stimulus information beyond the point of 
commitment. We therefore hypothesized that additional pulses of 
sensory evidence would have less effect on neural DV and behavioural 
choices when triggered by high DV values.

To test this prediction, we imposed virtual DV boundaries (as in 
Fig. 2a, b) that, if reached, triggered a 200-ms pulse of additive dots 
coherence (randomly assigned to be rightward or leftward on each 
trial) followed by stimulus termination (Fig. 4a). We swept a subset of 
the previously used DV values for the boundary (integers from 1 to 4 DV 
units). Pulses were only presented on trials with motion coherences 
near or below the subject’s psychophysical threshold; pulse strength 
was calibrated to yield very small but significant effects on behaviour, 
to avoid making the pulses sufficiently salient to change the animals’ 
integration strategy (∆coherence = 2% (monkey H), 4.5% (monkey F)). 
Pulse information had no bearing on reward9,19. Motion pulses slightly 

but significantly biased the monkeys’ choices in the direction of the 
pulse (Fig. 4b).

We reasoned that, to detect the small effects of these weak motion 
pulses on DV, and to best estimate the DV at the time when pulse infor-
mation could actually influence the momentary decision state, we 
should account for a processing delay between pulse presentation and 
measured effects on our recorded neural populations in PMd and M1. 
We refer to this delay, estimated from an independent set of open-loop 
trials, as the evidence representation latency (ERL), which is 170 ms for 
monkey H and 180 ms for monkey F (Supplementary Methods 16). For 
each pulse trial, we then measured the initial DV at the time of pulse 
onset plus the ERL (DVPERL) (Supplementary Methods 16), as well as the 
change in DV (𝛿DV) for each subsequent time bin. On average, motion 
pulses slightly but significantly biased 𝛿DV in the direction of the pulse 
(Fig. 4c, Extended Data Fig. 8a).

In simple, unbounded linear integration, we expect the magnitude 
of DV change in response to a fixed motion pulse to remain constant 
regardless of the initial state of the DV, as suggested above. By contrast, 
Fig. 4d (Extended Data Fig. 8b) shows that motion pulses led to larger 
DV changes when triggered by low DV values compared with high DV 
values, consistent with the presence of an absorbing decision bound.

We next addressed whether the decision bound is stationary or 
changing with time. For models with stationary bounds, the effect of 
the motion pulse would depend solely on the state of the DV at the time 
of the pulse, whereas for models with time-varying bounds16–18,20,21, 
the pulse effect would also depend on the pulse time. Devising an 
analysis that disentangles the effects of the DVPERL from pulse time 
also addresses a potential confound in the 𝛿DV analysis presented 
above: the motion pulse was always delivered at the end of the stim-
ulus and, on average, longer stimulus durations were required to 
generate higher DVs in our experiment, as expected from standard 
evidence-accumulation models. Thus the 𝛿DV analysis results could 
have been partially shaped by elapsed time. We therefore conducted 
an additional analysis to determine whether the reduced pulse effect 
was attributable specifically to higher DVs, to later pulse times (longer 
stimulus durations), or both.
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We adopted a data-driven approach to separate the effects of DVPERL 
and stimulus duration (Supplementary Methods 16.1). In brief, to isolate 
the effect of the magnitude of DVPERL (|DVPERL|), we (1) divided trials into 
eight quantiles for stimulus duration, (2) calculated a residual pulse 
effect for each trial by subtracting the mean pulse effect for each com-
bination of stimulus-duration quantile and baseline motion strength, 
(3) recombined the data across duration quantiles to obtain statistical 
power, and (4) analysed how the residuals varied with |DVPERL|. We refer 
to this as the time-adjusted effect of DVPERL, that is the effect of DVPERL 
that cannot be accounted for by stimulus duration or baseline motion 
strength (Fig. 4e, f). Conversely, to isolate the DV-adjusted effect of 
stimulus duration, we (1) divided trials into |DVPERL| bins, (2) calculated 
residual pulse effects by subtracting the mean effects for each com-
bination of |DVPERL| bin and baseline motion strength, (3) recombined 
the data across all |DVPERL| bins, and (4) analysed how the single-trial 
residuals varied with stimulus duration (Fig. 4g, h).

The time-adjusted magnitudes of both behavioural and neural pulse 
effects decreased systematically with |DVPERL| (Fig. 4e, f, Extended Data 
Fig. 8c, d, g–j), and the DV-adjusted magnitudes of both behavioural and 
neural pulse effects decreased systematically with stimulus duration 
(Fig. 4g, h, Extended Data Fig. 8e, f).

Discussion
In this study, we have combined neural population recordings 
with closed-loop, neurally contingent stimulus control to probe 
moment-to-moment fluctuations in decision states and validate 
their significance for behaviour. We show that large fluctuations in a 
decoded DV in premotor and primary motor cortices are nearly instan-
taneously (<100 ms) predictive of choices. Notably, these intra-trial DV 
fluctuations are not driven predominantly by intra-trial fluctuations 
in stimulus strength, as quantified by motion energy, even in CoM 
trials (Extended Data Fig. 9, Supplementary Note 4). This advance 
enabled real-time detection of covert cognitive events (such as CoM) 
at the neural level.

We exploited this approach to test current models of evidence accu-
mulation and termination in decision making. We introduced weak 
motion pulses at known DV values during naturally evolving decisions. 
Strictly linear, unbounded accumulation models predict a constant 
effect of stimulus pulses irrespective of the momentary decision state 
or the time of pulse presentation during the trial. By contrast, we found 
that the neural and behavioural effects of stimulus pulses were strong-
est when delivered at low DV values or short stimulus durations.
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Each of these two results establishes constraints on models of deci-

sion making. First, the decreased efficacy of stimulus pulses at higher 
DV values comprises direct evidence for absorbing bounds, a feature of 
the decision-making process that is widely assumed in many models of 
decision formation15,22–25. Our result indicates that the system becomes 
resistant to further motion input as the DV becomes larger, reflecting 
a stronger state of commitment to a choice. Evidence for a decision 
bound also emerged from experiment 1: DV variability decreases late 
in the trial, consistent with inferences from previous studies9,19 that 
the system becomes more resistant to new stimulus input at longer 
stimulus durations (Extended Data Fig. 10).

Second, the decreased efficacy of pulses with longer stimuli suggests 
that the amplitude of the terminating bound decreases with time dur-
ing the trial. Two large groups of models that lack a time-dependent 
termination mechanism cannot explain our data, because they predict 
that the pulse effect will be determined by the strength of the pulse and 
the state of the model when the pulse is delivered, with no independent 
effect of time: (1) models that assume a static termination mechanism, 
including commonly used drift diffusion models with fixed decision 
bounds; and (2) models that lack a termination criterion for fixed 
and variable duration tasks, relying instead on dynamic competition 
between two alternatives to determine the final choice15,26. Extensions 
of the drift diffusion models—and the broader class of bounded accu-
mulation models—that include time-dependent decision bounds27 
or an urgency signal16–18,20,21,28 are compatible with our experimental 
observations (Supplementary Note 5).

Our study builds on a substantial literature of single-unit9,19 and 
neural population2,4,5,8,29 studies of decision mechanisms, and lever-
ages the technical power of intracortical brain–computer interfaces 
developed for real-time control of prosthetic devices30–36. Our findings 
were enabled by the ability to accurately decode decision states in 
real time (Supplementary Note 6), which could bring the concept of 
cognitive prostheses37–41 closer to reality by providing another means 
of decoding subjects’ goals for use in prosthetic control. More broadly, 
our real-time closed-loop approach may also be applicable to other 
cognitive phenomena such as working memory and attention42,43, and 
even to affective processes41.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-03181-9.
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Extended Data Fig. 1 | Monkey and decoder performance. a, Psychophysical 
performance, motion discrimination task. Trials were sorted for stimulus 
duration in quartiles from long (dark green) to short (light green). Data points 
(black) correspond to mean accuracy ± s.e.m. Data from each quartile were fit 
separately by a Weibull curve (Supplementary Methods 6). Inset: fit parameter 
α (psychophysical threshold) for each quartile. For monkey H (F): data from 
12516 (12365) open-loop trials. For both subjects, median threshold for short 
duration stimuli (Q1, Q2 combined) was higher than for longest duration 
stimuli (Q3, Q4 combined, two-sided Wilcoxon rank-sum test: P = 6.188 × 10−30 
for monkey H, P = 2.136 × 10−65 for monkey F). The x axis shows natural log scale 
spacing. b, Real-time choice prediction accuracy. Same as Fig. 1c, for individual 
monkeys (16,468, 15,286 trials for monkey H, F). Accuracy departed from 
baseline 174.5 ± 18.8 ms (214.5 ± 8.09 ms) after dots onset for monkey H (F).  
c, Average DV during dots. Same as Fig. 1d, for individual monkeys. For monkey 
H (F) coherence is a significant regressor of DV (for at least one of the choices) 
for the period between [190, 870] ms ([230, 970] ms) aligned to dots onset. 
Minimum 1,220 (1,332) trials per condition shown for monkey H (F).  

d, Prediction accuracy as a function of DV magnitude. Same as Fig. 2c, for 
individual monkeys. Data from 2,973 (2,518) trials – minimum 495 (484) trials 
per condition shown – from monkey H (F). e, Prediction accuracy as a function 
of DV magnitude and stimulus coherence. Same data and conventions as in 
Fig. 2e, for individual monkeys and pre-sorted by high versus low coherences. 
Minimum 234 (238) trials per condition shown for monkey H (F). f, Prediction 
accuracy as a function of DV magnitude and stimulus duration. Same data and 
conventions as Fig. 2f, for individual monkeys and pre-sorted by stimulus 
duration (median split). Minimum 239 (235) trials per condition shown for 
monkey H (F). g, Prediction accuracy as a function of DV magnitude and time 
before stimulus termination. Prediction accuracy as a function of DV at time 
t+DT before termination. Each curve corresponds to a different DT from 0 ms 
(dark blue) to −400 ms (light blue). Accuracy: percentage of correctly 
predicted choices. Data from 2,973 (2,518) trials from monkey H (F). h, Single 
trial DVs substantially increase choice prediction accuracy. Same as Fig. 2d, for 
individual monkeys.
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Extended Data Fig. 2 | Prediction accuracy online versus offline. a, Online 
and offline classifiers result in similar performance, on average, for targets, 
dots, delay, and post-go epochs – monkey H. Average prediction accuracy 
(Supplementary Methods 9, 10, 12.3) over time ± s.e.m. (across sessions) for 
monkey H. Online/offline classifier results are plotted in black/red. Data in 
black are same as Fig. 1c, but for monkey H only. Prediction accuracy is very 
similar online and offline across the trial (see c). Data from 17 sessions (16,468 
trials). b, Same as a, but for monkey F. Data from 15 sessions (15,286 trials).  
c, Summary of performance difference between online and offline classifiers 
within each epoch – monkey H. Average performance difference between 

online and offline classifiers (accuracy difference in proportion correct) for 
each of the epochs plotted in a (same sessions). Data points (black dots) 
correspond to mean accuracy difference ± s.e.m. (across sessions). Positive 
numbers correspond to better online classifier performance and negative 
numbers to better offline classifier performance. Black asterisks correspond 
to windows for which the differences were significantly different from zero 
(Wilcoxon signed-rank test, P < 0.01 two-sided, P values: 0.0004, 0.00009, 
0.00009, 0.00009). d, Same as c, for monkey F (P values: 0.0051, 0.0001, 
0.0017, 0.0001).
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Extended Data Fig. 3 | Choice prediction accuracy calculated offline on 
single trials: PMd versus M1, multiple versus single classifiers. a, PMd 
predicts choices slightly better than M1 during stimulus presentation using a 
single classifier per epoch (monkey H). Mean prediction 
accuracy (Supplementary Methods 12.3) over time ± s.e.m. across sessions. 
Black dots denote time bins for which prediction accuracy was significantly 
different between the two areas (two-sided Wilcoxon signed-rank test, P < 0.05 
Holm–Bonferroni correction for multiple comparisons). Same data as in c, d 
(dark traces). Data from 17 sessions (16,468 trials). b, Same as a, but using a 
different classifier for each 50 ms window. Same data as in c, d (light traces).  
c, Single and multiple classifiers yield similar performance for targets, dots and 

go epochs but not for reach epoch for PMd (monkey H). Same trials and 
statistical conventions as a. Average prediction accuracy ± s.e.m. across 
sessions for PMd using a single classifier (trained on data across all time points 
within an epoch) or multiple classifiers (a new decoder trained for every 50 ms 
window) per epoch. In the dots and go cue periods, performance is nearly 
identical with single versus multiple classifiers, reflecting the stability of 
choice representation during these periods. In contrast, multiple classifiers 
(trained for every time point) perform better during the movement period 
when choice representation changes rapidly with time. d, Equivalent to c, but 
for M1. e, Same as c, but for monkey F. Data from 15 sessions (15,286 trials).
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Extended Data Fig. 4 | Neural population choice prediction accuracy 
calculated offline on single trials when applying classifiers across epochs. 
a, Only dots and go classifiers perform well across epochs. Average prediction 
accuracy (see Supplementary Methods 12.3) over time ± s.e.m. (across 
sessions) for monkey H for decoders trained in the targets (cyan), dots (dark 
yellow), go (magenta) and reach (black) periods. If the choice subspaces for two 
independent epochs are similar, the decoder from one epoch ought to 
accurately predict choice in the other epoch. Dots decoder performs well 
during go period and vice-versa. Targets and reach decoders perform poorly 
across other epochs. Data from 17 sessions (16,468 trials). b, Equivalent to a, 

but for monkey F. Same conventions apply. Data from 15 sessions (15,286 trials). 
c, Summary of performance difference between single and multiple classifiers 
within each epoch. Average performance difference between within-epoch 
classifier and across-epoch classifiers for each of the epochs plotted in a (same 
sessions). Error bars correspond to ± s.e.m. across sessions. Zero difference 
corresponds to the performance of the classifier trained and tested within the 
same epoch. d, Same as c, for monkey F. For both subjects in the dots and go 
periods the loss in decoding accuracy across epochs was very small, suggesting 
similar choice representation in both periods.
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Extended Data Fig. 5 | Choice prediction accuracy for correct and incorrect 
trials as a function of coherence. Choice prediction accuracy obtained from 
real-time readout for correct and incorrect trials for each level of coherence. 
Prediction accuracy during the dots epoch for each coherence level is plotted 
for correct (black) and error (magenta) trials. Red dashed line corresponds to 
chance level. Insets show total number of correct (C) and error (E) trials used in 
the analysis (correct and incorrect designation was randomly assigned for 0% 
coherence stimuli). Data for monkey H and F are shown in top and bottom 

panels, respectively. Mean prediction accuracy for error trials after neural 
latency (180 ms after stimulus presentation) is outside (and lower than) the 95% 
CI for correct trials for 1.6%, 3.2%, 6.4%, 12.8% and 25.6% coherences for monkey 
H and for 12.8%, 25.6% and 51.2% coherences for monkey F (1,000 bootstrap 
iterations). Results for the highest coherence for each monkey should be 
interpreted carefully due to the extremely low number of error trials for these 
conditions resulting from excellent behavioural performance. (Dashed pink 
lines represent individual error trials at the highest coherence for monkey F.).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Real-time decoding: performance reliability, 
decoder weights, and Mu and Sigma stability. a, Decoding performance is 
stable across sessions. Mean prediction accuracy late in the stimulus 
presentation (600–1,200 ms) across all sessions for monkey H (top panels) and 
monkey F (bottom panels). D1–D23 denote different decoders (sets of beta 
weights) used for the recorded sessions. For monkey H the same decoder (D1) 
was used for the first 14 sessions. The breaks on the x axis correspond to 
sessions that occurred on non-consecutive days. b, Real-time decoder β 
weights. β weights during the dots period (left panel) ranked by absolute 
magnitude for an example decoder (D1 from monkey H) used in real-time 

experiments. Channels with no or little choice predictive activity during this 
period had their weights set to zero using LASSO regularization to prevent over 
fitting. Delay period and post go cue β weights are shown in the middle and 
right panels respectively. c, Mu and Sigma matrices are very stable over dozens 
of sessions – monkey H. Average spike counts within a 50-ms window (Mu, left 
panel) and standard deviation of spike counts (Sigma, right panel) are plotted 
as a function of channel ( y axis) and trial (x axis) for the sessions comprising 
closed loop experiments 1 and 2 for monkey H. Red lines, breaks between 
sessions. d, Same as c, for monkey F.
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Extended Data Fig. 7 | Validation of putative changes of mind. a, Choice 
prediction accuracy for all trials collected during the CoM detection 
experiment. Trials were split in 6 quantiles sorted by DV magnitude (absolute 
value) at termination. Prediction accuracy and median DV magnitude were 
calculated and plotted separately for each quantile (blue line with black data 
points). Blue error bars show standard error of the mean for a binomial 
distribution. Dashed black line shows predicted accuracy from log-odds 
equation used to fit the DV model, and red dashed line shows chance level. Left: 
Data from 985 CoM trials (164 trials per condition) from monkey H. Right: Data 

from 1,727 CoM trials (287 trials per condition) from monkey F. b, CoM 
frequency as a function of coherence. Same as Fig. 3c for individual monkeys.  
c, CoM frequency as a function of coherence and direction. Same as Fig. 3d for 
individual monkeys. Median corrective and erroneous CoM counts: 530 and 
242 for monkey H and 1,046 and 443 for monkey F, respectively (Wilcoxon 
rank-sum test P < 0.001). d, CoM frequency as a function of time in the trial. 
Same as Fig. 3e for individual monkeys. e, CoM time as a function of coherence. 
Same as Fig. 3f for individual monkeys. CoM time was negatively correlated 
with stimulus coherence (monkey H: P = 1.8 × 10−17; monkey F: P = 3.0 × 10−30).
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Motion pulse effects over DVPERL and time. a, Average 
change in post-pulse DV, time-locked to estimated Pulse Evidence 
Representation Latency (PERL), mean subtracted. Same as Fig. 4c for individual 
monkeys. PERL = 170 ms (180 ms) for monkey H (F). b, Average change in post-
pulse DV for each DV boundary, time-locked to PERL, mean subtracted. Same as 
Fig. 4d for individual monkeys. Minimum 1,507 (1,731) trials per condition 
shown for monkey H (F). c, Residual behavioural pulse effects over |DVPERL|. 
Same as Fig. 4e for individual monkeys. Minimum 501 (504) trials per condition 
shown for monkey H (F). d, Residual neural pulse effects over |DVPERL|. Same as 
Fig. 4f for individual monkeys. e, Residual behavioural pulse effects over time. 
Same as Fig. 4g for individual monkeys. Minimum 1,122 (1,217) trials per 
condition shown for monkey H (F). f, Residual neural pulse effects over time. 
Same as Fig. 4h for individual monkeys. g, Pooled residual behavioural pulse 
effects over signed DV†

PERL (Supplementary Methods 16.1, step 4). Black: mean 

residual pulse effects on choice for trials in each DV†
PERL bin, ± s.e.m.; asterisks 

denote significantly non-zero means at 95% confidence (Supplementary 
Methods 16.1). Blue: nonlinear regression model fit (MATLAB fitnlm function) 
of the residuals to a Gaussian over DV†

PERL, including the P value (two-sided  
t-statistic) for the fit amplitude coefficient. h, Pooled residual neural pulse 
effects over signed DVPERL. Black: mean residual pulse effects on ∆DV for trials 
in each DV†

PERL bin, ± s.e.m.; asterisks denote significantly non-zero means at 
95% confidence (Supplementary Methods 16.1). Blue: nonlinear regression 
model fit (MATLAB fitnlm function) of the residuals to a Gaussian over DV†

PERL, 
including the P value (two-sided t-statistic) for the fit amplitude coefficient.  
i, Residual behavioural pulse effects over DV†

PERL, single subjects. Same as g, for 
individual monkeys. Minimum 149 (151) trials per condition shown for monkey 
H (F). j, Residual neural pulse effects over DV†

PERL, single subjects. Same as h, for 
individual monkeys.
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Extended Data Fig. 9 | Correlation analysis between DV and stimulus 
motion energy (ME). a, Correlation between ME and DV across coherences – 
monkey H. Proportion of variance explained when regressing DV as a function 
of signed stimulus coherence (grey) or ME. Each green trace corresponds to a 
separate regression between DV and ME, offset by 180 ms to compensate for 
neural response delay (Supplementary Methods 14). Darker traces correspond 
to regressions in which ME was averaged over a longer period of time within 
each trial. Rises to peak in green traces appear right-shifted by approximately 
60 ms due to edge effects from filtering ME at the beginning of each trial. 
Across all coherence levels ME and signed coherence explain a large fraction of 
DV variance. b, Same as a, for monkey F. c, Correlation between ME and DV 
within each signed stimulus coherence level – monkey H. Proportion of 
variance explained when regressing DV for each time point and within each 
level of signed coherence as a function of the ME (offset by 180 ms; see a). 

Within each level of signed coherence, the DV fluctuations are not explained by 
the ME traces. d, Same as c, for monkey F. e, Correlation between ME and DV 
slope during putative changes of mind within each signed coherence level – 
monkey H. Proportion of variance explained when regressing signed DV slope 
during the CoM for each level of signed coherence as a function of ME. ME was 
averaged over the 100 ms preceding the CoM, offset by 180 ms. DV slope was 
calculated over a 100 ms window centred around the zero-crossing defining 
the CoM. Within each level of signed coherence, the direction and magnitude 
of the CoM zero-crossings are not explained by ME. P values displayed are 
uncorrected (linear regression); none of the fit coefficients are significantly 
non-zero after correction for multiple comparisons. Data from 985 CoM trials 
from monkey H. f, Same as e, for monkey F. None of the fit coefficients are 
significantly non-zero after correction for multiple comparisons. Data from 
1,727 CoM trials from monkey F.
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Extended Data Fig. 10 | Within trial DV variability decreases over time for 
long duration stimuli. a, Average DV derivative as a function of time and 
choice – monkey H. DV derivative was calculated for each trial as the difference 
between consecutive DV estimates spaced out by 10 ms (Supplementary 
Methods 13). Traces show average DV derivative ± s.e.m. for right choices (red 
trace) and left choices (blue trace) during stimulus presentation. DV derivative 
initially starts increasing around the expected stimulus latency (170 ms) but 
progressively decreases for long (>600 ms) stimulus presentations. Minimum 

8,176 trials per condition shown. b, Same as a, but for monkey F. Minimum 8,685 
trials per condition shown. c, Average DV derivative as a function of time, 
coherence, and choice (correct trials only) – monkey H. Same data as in a, but 
with DV derivative averaged separately for each choice and motion coherence 
level. Right choices are plotted in red and left choices in blue as in a. Darker 
traces correspond to stronger coherences. Minimum 557 trials per condition 
shown. d, Same as c, but for monkey F. Minimum 692 trials per condition shown.
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