Article

Decoding and perturbing decision statesin

real time

https://doi.org/10.1038/s41586-020-03181-9
Received: 24 June 2019

Accepted: 9 December 2020

Diogo Peixoto"**"%, Jessica R. Verhein®**>""*, Roozbeh Kiani®, Jonathan C. Kao®"®%,
Paul Nuyujukian®*"°"2, Chandramouli Chandrasekaran®”*'45, Julian Brown"?, Sania Fong"?,
Stephen I. Ryu™®, Krishna V. Shenoy'?"%1213 & William T. Newsome'*'2*

Published online: 20 January 2021

M Check for updates

In dynamic environments, subjects often integrate multiple samples of a signal and
combine them to reach a categorical judgment'. The process of deliberation can be

described by a time-varying decision variable (DV), decoded from neural population
activity, that predicts a subject’s upcoming decision® Within single trials, however,
there are large moment-to-moment fluctuations in the DV, the behavioural significance
of whichis unclear. Here, using real-time, neural feedback control of stimulus duration,
we show that within-trial DV fluctuations, decoded from motor cortex, are tightly
linked to decision state in macaques, predicting behavioural choices substantially
better than the condition-averaged DV or the visual stimulus alone. Furthermore,
robust changesin DV sign have the statistical regularities expected from behavioural
studies of changes of mind>. Probing the decision process on single trials with weak
stimulus pulses, we find evidence for time-varying absorbing decision bounds,
enabling usto distinguish between specific models of decision making.

When making a categorical decision about a noisy stimulus, subjects
commonly fluctuate between levels of commitment to achoice before
reporting a decision. Insomeinstances, the fluctuations are sufficiently
strong tolead to a change of mind (CoM)? %, Because these within-trial
fluctuations are different from trial to trial and not necessarily tied
to an external event or stimulus feature, they can only be captured
using a moment-to-moment neural readout of the decision state on
single trials.

To obtain such areadout, we decoded an instantaneous DV in real
time from neural population activity in dorsal premotor cortex (PMd)
and M1while two monkeys performed a motion-discrimination task®°
(Fig.1a, Supplementary Methods 3; allmethods for this paper are pro-
vided in the Supplementary Information). We used a linear decoder,
trained on previously obtained data, on multielectrode spiking data
fromthe preceding 50-100 ms, updated every 10 ms throughout each
trial (Fig. 1b, Supplementary Methods 9, 10). The sign of the DV indi-
cated which choice was predicted, enabling calculation of the decoder’s
prediction accuracy. The magnitude of the DV reflected the model’s
prediction confidence in units of log odds for one versus the other
decision (Supplementary Methods 9). Note that the DV defined here
encompasses all choice-predictive signals that can be decoded from
neural activity”, including but not limited to accumulated evidence as
posited in classical models.

We demonstrate that this real-time DV can predict choices onsingle
trials beginning approximately 250 ms after visual stimulus onset,

and that prediction accuracy increases throughout the course of the
trial, consistent with previous offline observations. Moreover, we
employ closed-loop, neurally contingent control over stimulus tim-
ing to directly probe the behavioural significance of within-trial DV
fluctuations. We quantify the behavioural effects of previously covert
DV variations (1) as a function of time and instantaneous DV (experi-
ment1), (2) during CoM-like DV fluctuations (experiment2),and (3) in
response to subthreshold stimulus pulses (experiment 3). Using this
approach, we validate the behavioural relevance and computational
implications of intra-trial DV fluctuations.

Real-time choice decoding

Psychophysical performance on the discrimination task! was better
for higher coherences and stimuli of longer duration (Extended Data
Fig. 1a), as expected from previous studies®'. We first measured the
accuracy of our real-time decoder in predicting monkeys’ choices as
afunction of time during the trial. The average prediction accuracy
started near chance during the targets epoch (Fig. 1c, Extended Data
Fig. 1b). During stimulus presentation, average prediction accuracy
quickly departed from baseline, rising monotonically to 99% correct
for thelongest stimulus presentations for monkey Hand 98% for mon-
key F. Moreover, for all 4 epochs considered, the average accuracy of
our real-time readout was within +2% of an equivalent offline decoder
(Extended DataFigs.2a-d, Supplementary Methods 12.3; comparisons
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Fig.1|Real-timereadout of decisionstates during a motion discrimination
task. a, Motion discrimination task. Task design, single trial (described further
inSupplementary Methods 3). Decision states were continuously decoded
duringallepochsof the trial. Three different decoders were used during
different trial epochs (coloured boxes; Supplementary Methods 9). We focused
primarily onthe dots epochin this study. b, Real-time, closed-loop setup.
Neural activity was continuously recorded, processed and decoded
(Supplementary Methods 7 and 10). The resulting real-time DV could be used to
stop the stimulus presentationin aneurally contingent manner (red arrow),
closing theloopin the experiment. ¢, Choice prediction accuracy from
real-time, open-loop readout. Black traces, mean (+ s.e.m.) predictionaccuracy

between PMd and M1in monkey H and for decoders trained in different
epochs are presented in Extended Data Figs. 3, 4). Thus, our real-time
decoderreproduces the prediction accuracy of our own offline analyses
and of an analogous study of the prearcuate cortex?.

Ourreal-time decoder also reproduced the average temporal dynam-
icsand coherence dependence expected of the DV: it started ataround
0 at dots onset, separated by choice after about 200 ms, and rose (or
fell) faster for higher coherence trials (Fig. 1d, Extended Data Fig. 1c).
As expected from previous results®, prediction accuracy was higher
for correct trials than error trials (Extended Data Fig. 5) at constant
stimulus coherence.

Our decoding method yielded stable performance across multiple
days, justifying combination of data across sessions (Extended Data
Fig. 6).

DV fluctuations track evolving decisions

We often observed large fluctuations (over 3 natural log units) in
the DV on individual trials, even within single epochs (Fig. 1e). If
moment-to-moment fluctuations in DV reflect fluctuations in the
animal’s decision state, we expect larger absolute values of DV to be
associated with stronger preference for one of the two choices, and
hence higher prediction accuracy were a decision to be required at a
given time during a single trial.

Because we decoded and tracked the DV in real time, we were able
totest this expectation by terminating the visual stimulusin aneurally
contingent manner and probing both neural activity and behaviour
with high precision and negligible latency (less than 34 ms; Supple-
mentary Methods 11.4). In the first closed-loop test (experiment 1),
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(Supplementary Methods 9,10) over time, pooled across monkeys (calculated
foreachsessionand averaged across sessions; 32,294 trials total). d, Average
DV traces during dots period. Top, mean DV for right (red) and left (blue)
choices, pooled across monkeys. Bottom, mean DV sorted by choice and
stimulus coherence (correct trials only), pooled across monkeys. Darker
shades correspond to higher coherences (Supplementary Methods 4). Red
(blue) bars indicate time points for which coherence was asignificant regressor
of DV for right (or left) choices, respectively (correct trials only; linear
regression, P<10™° uncorrected, two-sided t-statistic). e, Example single-trial
DV traces, open-loop trials (monkey H).

we imposed virtual decision boundaries at specific DV values that, if
reached, triggered stimulus termination (Fig. 2a), prompting the sub-
jecttoimmediately reportits decision (in trials with no delay period).
For example, Fig.2b shows 22 DV traces that reached a fixed DV bound-
ary of magnitude 3 (tolerance of +0.25 DV units), leading to stimulus
termination and the subject’s decision. In this manner, we obtained a
direct mapping between the nearly instantaneous readout of decision
state and the likelihood of a given choice.

We systematically swept boundary heights from 0.5-5 DV units in
increments of 0.5 (1 DV unit corresponds to anincrease of 2.718 in the
likelihood ratio of choosing one target over the other). Figure 2c shows
that predictionaccuracy increases monotonically with the DV magni-
tude at termination, as expected. Using only 100 ms of data to estimate
the terminating DV, the observed likelihood of a given choice (solid
trace) differed from that predicted by the logistic function (dashed
trace) by 1.7% for monkey H and by 1.9% for monkey F (mean absolute
error; Extended Data Fig. 1d). Notably, prediction accuracy falls sys-
tematically as the time window for calculating DV is moved further
than 100 ms into the past (Extended Data Fig. 1g). Thus, very recent
neural population activity better reflects the current decision state
than earlier time intervals. In further analyses, we performed the cal-
culationin Fig. 2c on subsets of the aggregated data: high versus low
stimulus coherences and short- versus long-duration trials. The result
inFig. 2cis robust across trial duration, but differs modestly for high
versus low coherences (Extended DataFig. 1e, f), revealing a significant
effect of DV derivative on prediction accuracy (Supplementary Note1,
Supplementary Table 2).

Overall, these results show that moment-by-moment fluctuations
in PMd and M1 neural population activity captured by our decoding
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Fig.2|Choicelikelihood, accurately decoded in real-time using only

100 ms ofneural data. a, Virtual boundary experiment schematic. Virtual
boundaries for DV magnitude (greenshading) wereimposed andif reached,
triggered the termination of the stimulus (Supplementary Methods 11.1). The
subject thenimmediately reported its decision. A minimum stimulus duration
wasimposed (grey shading). Grey traces, cartoons of trials for which the
boundary was notreached. Red (blue) traces, cartoons of terminated trials for
whichthe decoder predicted right (left) choices. b, Example trials during the
virtualboundary experiment (monkey H). Real-time DV time courses for
example trials terminated using boundaries set at £3 DV units. ¢, Prediction

model are indeed reflective of a fluctuating internal decision state—
fluctuations that have been covert and thus uninterpretable until now.

To quantify how much additional predictive power is gained from
thereal-time DV readout compared with (1) the stimulus itself, and (2)
the average DV for a given stimulus coherence and time-in-trial, we
builtthree nested logistic regression models, each using an additional
regressor (Supplementary Methods 12.1). The first model, using only
stimulus information (motion energy) plus an intercept, correctly
predicted choice in 74.5% of trials for monkey H and 71.5% of trials for
monkey F (Supplementary Table1). Adding the average DV for the cor-
responding stimulus coherence and time in trial to thismodelincreased
prediction accuracy by 2-3%. By contrast, adding the single-trial DV
at termination as a third regressor increased prediction accuracy by
more than 10%. This effect is substantial for lower-coherence trials
(Fig.2d, Extended DataFig.1h).Second, as acomplementary analysis,
we built four logistic regression models, three using only one of the
above regressors (Supplementary Methods 12.1) and a fourth using
signed motion coherence. Not only was single trial DV by itself 10%
more accurate than any other regressor, it was also only 1-2.5% less
predictive thanthe model with all 3 regressors (Supplementary Table1).

We emphasize that our decoded DV is model based and thus only a
proxy for the actual decision state in the brain. We are sampling from
arelatively small number of neurons in only one brain region, over
relatively short time bins, and the underlying mechanism is unlikely
tobestrictly linear. Despite these caveats, our ability to predict choice
likelihood within a small margin of error confirms that DV is areliable
proxy for decision state.

Neurally detected changes of mind

Validation of the mapping between DV and choice likelihood (Fig. 2c)
enabled us to perform a new closed-loop experiment (experiment 2)
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accuracy as afunction of DV magnitude. Blue trace and black symbols, all 5,876
trials from both monkeys during the virtual boundary experiment. Mean
predictionaccuracy +s.e.m.and median DV magnitude were calculated and
plotted separately for each of six DV quantiles. Dashed black line, predicted
accuracy fromlog-odds equation used to fit the DV model; red dashed line,
chancelevel.d, Single trial DVs substantially increase prediction accuracy.
Predictionaccuracy as function of coherence for three nested models with
successively moreregressors (Supplementary Methods12.1). ME, motion
energy.

aimed at capturing robust DV fluctuations in which the sign of the DV
changed mid-trial, suggestive of a behavioural CoM (Fig. 3a, b). We
established neural criteria for a candidate CoM that, when metinreal
time, led to stimulus termination and the monkey’s decision (Fig. 3a,
Supplementary Methods 11.2).

We conceptually divide a CoM trial into two segments—the initial
preference before the DV sign change, and the final (opposite) prefer-
encethatleadstothe observed choice. Theinterpretation of the initial
preferencerelies onthe mappingbetween the DV and choice likelihood
obtained from experiment 1. The observed choices allow validation of
the neural estimate of the final decision state in the second segment
(Extended Data Fig. 7a, Supplementary Note 2).

For monkeyF, the relationship between prediction accuracy and DV
at stimulus termination was very similar for CoM and non-CoM trials
(compare Extended DataFig. 1d, right with Extended Data Fig. 7a, right;
mean error between predicted and observed choice likelihood: 1.9%
fornon-CoM trials and 3.8% for CoM trials). This relationship was also
lawful and monotonic for monkey H, although observed prediction
accuracy was lower than expected from the logistic model (compare
Extended DataFig.1d, left with Extended Data Fig. 7a, left; mean error
between predicted and observed choice likelihood: 1.7% for non-CoM
trialsand 9.3% for CoM trials), suggesting that in addition to the meas-
ured DV at stimulus termination, the decisions of monkey H were influ-
enced by some aspect of the DV trajectory history specifically related to
the CoM (Extended DataFig.7a, Supplementary Note 3, Supplementary
Table 3, Supplementary Methods 12.4).

We combined all 985 CoMs detected in monkey H (and all 1,727
CoMs detected in monkey F) to assess whether our neurally detected
CoMs conformed to three statistical regularities of CoMs established
in previous psychophysical® and electrophysiological® studies: (1)
CoMs are more frequent for low- and intermediate-coherence trials
compared with high-coherence trials; (2) CoMs are more likely to
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Fig.3|Putative CoMsdetected inreal time.a, CoM experimentschematic.
Oneachtrial,ifaDV zero crossing was detected and met remaining CoM
criteria (Supplementary Methods11.2, Supplementary Table 4; green arrows,
criteria for temporal stability of DV sign; orange arrows, criteria for minimum
DV deflections), the stimulus was terminated and the subjectimmediately
reportedits decision (red cartoon, example trace). Grey cartoon example
traces, trialsin which CoM criteria were not met. A250-ms minimum stimulus
duration wasimposed (grey shading). b, Example CoM trials. Real-time DV
traces for two example trials from monkey H with candidate CoMs. ¢, CoM
countasafunctionof coherencelevel. Datafrom 2,712 CoMs total, pooled

be corrective than erroneous; and (3) CoMs are more frequent early
in the trial than later in the trial. All three predicted regularities are
trueinour real-time neural detection data (Fig. 3c-e, Extended Data
Fig.7b-d).

Wealso discovered anew regularity associated with CoMs: the aver-
agetime of zero crossing was negatively correlated with stimulus coher-
ence (Fig. 3f, Extended Data Fig. 7e). This observation probably results
fromthestronger corrective effect of higher-coherence stimuli (Fig. 3d,
Extended Data Fig. 7c).

Ofnote, the statistical regularities in the neural CoMs were not fore-
ordained since our decoder was trained on choices made at the end of
trials, completely agnostic to rare CoMs during any given trial.

Probing decisions with motion pulses

In afinal closed-loop experiment (experiment 3), we tested whether
neural and behavioural responses to brief pulses of additional
motion information varied with DV and/or the time of pulse onset.
Decision-making models involving accumulation of evidence to a
bound"™" predict that termination of deliberation and commitment
to a choice become more likely at high DV values>**"7*8, resulting in
decreased sensitivity to stimulus information beyond the point of
commitment. We therefore hypothesized that additional pulses of
sensory evidence would have less effect on neural DV and behavioural
choices when triggered by high DV values.

To test this prediction, we imposed virtual DV boundaries (as in
Fig.2a, b) that, if reached, triggered a 200-ms pulse of additive dots
coherence (randomly assigned to be rightward or leftward on each
trial) followed by stimulus termination (Fig. 4a). We swept a subset of
the previously used DV values for the boundary (integers from1to4 DV
units). Pulses were only presented on trials with motion coherences
near or below the subject’s psychophysical threshold; pulse strength
was calibrated to yield very small but significant effects on behaviour,
to avoid making the pulses sufficiently salient to change the animals’
integration strategy (Acoherence =2% (monkey H), 4.5% (monkey F)).
Pulseinformation had nobearing on reward®. Motion pulses slightly
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across monkeys. CoM frequency was negatively correlated with coherence
(linearregression P<0.001).d-f,Same dataasc.d, Corrective and erroneous
CoM countsasafunction of coherence. Datasorted by reward outcome. e, CoM
frequency asafunction of time during stimulus presentation. Edge effect
(increasing CoM frequency from 250 to 400 ms) results from exclusion of
potential CoMs that would have resolved before the minimum 250 ms stimulus
duration. f, CoMtimeasafunctionof coherence. Mean (+s.e.m.) timeof the
zero crossing for CoM trials. CoM time was negatively correlated with
coherence (linear regression, P=1.14 x107%°),

but significantly biased the monkeys’ choices in the direction of the
pulse (Fig. 4b).

We reasoned that, to detect the small effects of these weak motion
pulses on DV, and to best estimate the DV at the time when pulse infor-
mation could actually influence the momentary decision state, we
should account for aprocessing delay between pulse presentation and
measured effects on our recorded neural populationsin PMd and M1.
Werefer tothis delay, estimated fromanindependent set of open-loop
trials, asthe evidencerepresentation latency (ERL), whichis170 ms for
monkey Hand 180 ms for monkey F (Supplementary Methods 16). For
each pulse trial, we then measured the initial DV at the time of pulse
onset plus the ERL (DVyg,) (Supplementary Methods 16), as well as the
changein DV (6DV) for each subsequent time bin. On average, motion
pulses slightly but significantly biased 5DV in the direction of the pulse
(Fig. 4c, Extended Data Fig. 8a).

Insimple, unbounded linear integration, we expect the magnitude
of DV change in response to a fixed motion pulse to remain constant
regardless of the initial state of the DV, as suggested above. By contrast,
Fig.4d (Extended Data Fig. 8b) shows that motion pulses led to larger
DV changes when triggered by low DV values compared with high DV
values, consistent with the presence of an absorbing decision bound.

We next addressed whether the decision bound is stationary or
changing with time. For models with stationary bounds, the effect of
the motion pulse would depend solely on the state of the DV at the time
of the pulse, whereas for models with time-varying bounds's 822,
the pulse effect would also depend on the pulse time. Devising an
analysis that disentangles the effects of the DV, from pulse time
also addresses a potential confound in the 6DV analysis presented
above: the motion pulse was always delivered at the end of the stim-
ulus and, on average, longer stimulus durations were required to
generate higher DVs in our experiment, as expected from standard
evidence-accumulation models. Thus the 5DV analysis results could
have been partially shaped by elapsed time. We therefore conducted
anadditional analysis to determine whether the reduced pulse effect
was attributable specifically to higher DVs, to later pulse times (longer
stimulus durations), or both.
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reaction time (whichever came first; Supplementary Methods 16). The mean
sDVacross pulse directionsin each time bin hasbeen subtracted for
visualization. Black dots, time bins in which DV differs significantly for
leftward versus rightward pulse trials (false discovery rate 0.05). Same trials as
b, pooled across monkeys. d, Average change in post-pulse DV for each DV
boundary, aligned to PERL (mean subtracted). Same trials and conventions asc,
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We adopted adata-driven approach to separate the effects of DV,
and stimulus duration (Supplementary Methods 16.1). In brief, toisolate
the effect of the magnitude of DV, (IDVpeg 1), we (1) divided trials into
eight quantiles for stimulus duration, (2) calculated a residual pulse
effect for each trial by subtracting the mean pulse effect for each com-
bination of stimulus-duration quantile and baseline motion strength,
(3) recombined the data across duration quantiles to obtain statistical
power, and (4) analysed how the residuals varied with [DVpg, |. We refer
to this as the time-adjusted effect of DV, that is the effect of DVygg,
that cannot be accounted for by stimulus duration or baseline motion
strength (Fig. 4e, f). Conversely, to isolate the DV-adjusted effect of
stimulus duration, we (1) divided trialsinto |DV, | bins, (2) calculated
residual pulse effects by subtracting the mean effects for each com-
bination of |DV,g, | bin and baseline motion strength, (3) recombined
the data across all DV, | bins, and (4) analysed how the single-trial
residuals varied with stimulus duration (Fig. 4g, h).

Thetime-adjusted magnitudes of both behavioural and neural pulse
effects decreased systematically with |DV,g, | (Fig. 4€, f, Extended Data
Fig.8¢c,d, g-j), and the DV-adjusted magnitudes of both behavioural and
neural pulse effects decreased systematically with stimulus duration
(Fig. 4g, h, Extended DataFig. 8e, f).
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stimulus-congruent minusincongruent pulse trials (Supplementary Methods
16.1). "Variableis signed according to the direction of the motion of the baseline
stimulus. Black, mean (+s.e.m.) residual pulse effects on choice for trials in
each [DV,g, | bin. Asterisks denote significantly non-zero means at 95%
confidence (bootstrapped; Supplementary Methods 16.1). Blue, nonlinear
regression model fit of the residuals to a half Gaussian over |DV g, |
(Levenberg-Marquardtalgorithm, using the MATLAB fitnIm function),
including the Pvalue for the fitamplitude coefficient (two-sided ¢-statistic).
Sametrialsasd.f-h, Sametrials, conventions and statistics as e. f, Residual
neural pulse effects over DV, | (A(mean ADV' ). ADV, DV averaged over the
last 50 ms of the time window described in ¢, minus the DV averaged over the
50 ms pre-PERL (Supplementary Methods 16.1). Black, mean (+s.e.m.) residual
pulse effects on ADV for each DV, | bin. g, Residual behavioural pulse effects
over time (A(mean choice',.;)). Black, mean (+s.e.m.) residual pulse effects on
choicefortrialsineach stimulus-duration quantile. h, Residual neural pulse
effects over time (A(mean ADV',;)). Black, mean (+s.e.m.) residual pulse
effectson ADV for each stimulus-duration quantile.

Discussion

In this study, we have combined neural population recordings
with closed-loop, neurally contingent stimulus control to probe
moment-to-moment fluctuations in decision states and validate
their significance for behaviour. We show that large fluctuationsina
decoded DVinpremotor and primary motor cortices are nearly instan-
taneously (<100 ms) predictive of choices. Notably, these intra-trial DV
fluctuations are not driven predominantly by intra-trial fluctuations
in stimulus strength, as quantified by motion energy, even in CoM
trials (Extended Data Fig. 9, Supplementary Note 4). This advance
enabled real-time detection of covert cognitive events (such as CoM)
atthe neural level.

We exploited this approachto test current models of evidence accu-
mulation and termination in decision making. We introduced weak
motion pulses at known DV values during naturally evolving decisions.
Strictly linear, unbounded accumulation models predict a constant
effect of stimulus pulsesirrespective of the momentary decision state
orthe time of pulse presentation during the trial. By contrast, we found
that the neuraland behavioural effects of stimulus pulses were strong-
est when delivered at low DV values or short stimulus durations.
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Eachofthese two results establishes constraints on models of deci-
sion making. First, the decreased efficacy of stimulus pulses at higher
DV values comprises direct evidence for absorbing bounds, afeature of
the decision-making process that is widely assumed in many models of
decision formation>**%, Our resultindicates that the system becomes
resistant to further motion input as the DV becomes larger, reflecting
astronger state of commitment to a choice. Evidence for a decision
bound also emerged from experiment 1: DV variability decreases late
in the trial, consistent with inferences from previous studies®’ that
the system becomes more resistant to new stimulus input at longer
stimulus durations (Extended Data Fig. 10).

Second, the decreased efficacy of pulses with longer stimuli suggests
that the amplitude of the terminating bound decreases with time dur-
ing the trial. Two large groups of models that lack a time-dependent
termination mechanism cannot explain our data, because they predict
that the pulse effect will be determined by the strength of the pulse and
the state ofthe model whenthe pulseis delivered, withnoindependent
effect of time: (1) models that assume a static termination mechanism,
including commonly used drift diffusion models with fixed decision
bounds; and (2) models that lack a termination criterion for fixed
and variable duration tasks, relying instead on dynamic competition
between two alternatives to determine the final choice’*. Extensions
of the drift diffusion models—and the broader class of bounded accu-
mulation models—that include time-dependent decision bounds?
or an urgency signal'®782°228 gre compatible with our experimental
observations (Supplementary Note 5).

Our study builds on a substantial literature of single-unit®® and
neural population®**#?’ studies of decision mechanisms, and lever-
ages the technical power of intracortical brain-computer interfaces
developed for real-time control of prosthetic devices** . Our findings
were enabled by the ability to accurately decode decision states in
real time (Supplementary Note 6), which could bring the concept of
cognitive prostheses® * closer to reality by providing another means
of decoding subjects’ goals for usein prosthetic control. More broadly,
our real-time closed-loop approach may also be applicable to other
cognitive phenomenasuch as working memory and attention*>*?, and
even to affective processes*..
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Extended DataFig.1|Monkey and decoder performance. a, Psychophysical
performance, motion discrimination task. Trials were sorted for stimulus
durationin quartiles fromlong (dark green) to short (light green). Data points
(black) correspond to mean accuracy +s.e.m. Data from each quartile were fit
separately by a Weibull curve (Supplementary Methods 6). Inset: fit parameter
a (psychophysical threshold) for each quartile. For monkey H (F): data from
12516 (12365) open-loop trials. For both subjects, median threshold for short
duration stimuli (Q1, Q2 combined) was higher than for longest duration
stimuli (Q3, Q4 combined, two-sided Wilcoxon rank-sum test: P=6.188 x107°
formonkey H, P=2.136 x10"* for monkey F). The x axis shows natural log scale
spacing. b, Real-time choice predictionaccuracy. Same as Fig. 1c, for individual
monkeys (16,468,15,286 trials for monkey H, F). Accuracy departed from
baseline174.5 +18.8 ms (214.5+ 8.09 ms) after dots onset for monkey H (F).
c,Average DV during dots. Same as Fig. 1d, for individual monkeys. For monkey
H (F) coherence is asignificantregressor of DV (for at least one of the choices)
forthe period between [190, 870] ms ([230,970] ms) aligned to dots onset.
Minimum1,220 (1,332) trials per condition shown for monkey H (F).

d, Predictionaccuracy as afunction of DV magnitude. Same as Fig. 2c, for
individual monkeys. Datafrom 2,973 (2,518) trials - minimum 495 (484) trials
per conditionshown - from monkey H (F). e, Prediction accuracy as afunction
of DV magnitude and stimulus coherence. Same dataand conventions asin
Fig.2e, forindividual monkeys and pre-sorted by high versus low coherences.
Minimum 234 (238) trials per condition shown for monkey H (F).f, Prediction
accuracy as afunction of DV magnitude and stimulus duration. Same dataand
conventionsas Fig. 2f, for individual monkeys and pre-sorted by stimulus
duration (median split). Minimum 239 (235) trials per condition shown for
monkey H (F).g, Prediction accuracy as a function of DV magnitude and time
before stimulus termination. Prediction accuracy as afunction of DV at time
t+DTbefore termination. Each curve corresponds to adifferent DT from O ms
(dark blue) to—400 ms (light blue). Accuracy: percentage of correctly
predicted choices. Datafrom 2,973 (2,518) trials from monkey H (F). h, Single
trial DVs substantially increase choice predictionaccuracy. Same as Fig. 2d, for
individual monkeys.
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Extended DataFig.2|Predictionaccuracy online versus offline. a, Online
and offline classifiers result in similar performance, on average, for targets,
dots, delay, and post-go epochs - monkey H. Average prediction accuracy
(Supplementary Methods 9,10,12.3) over time + s.e.m. (across sessions) for
monkey H. Online/offline classifier results are plotted inblack/red. Datain
black aresame as Fig. 1c, but for monkey H only. Prediction accuracy is very
similar online and offline across the trial (see ¢). Data from 17 sessions (16,468
trials). b, Same as a, but for monkey F. Datafrom 15 sessions (15,286 trials).

¢, Summary of performance difference between online and offline classifiers
within each epoch - monkey H. Average performance difference between

onlineand offline classifiers (accuracy difference in proportion correct) for
eachoftheepochsplottedina(samesessions). Data points (black dots)
correspond to mean accuracy difference +s.e.m. (across sessions). Positive
numbers correspond to better online classifier performance and negative
numbers to better offline classifier performance. Black asterisks correspond
towindows for which the differences were significantly different from zero
(Wilcoxonsigned-rank test, P<0.01two-sided, Pvalues: 0.0004,0.00009,
0.00009,0.00009).d, Same as ¢, for monkey F (Pvalues: 0.0051,0.0001,
0.0017,0.0001).
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Extended DataFig. 3| Choice predictionaccuracy calculated offlineon
single trials: PMd versus M1, multiple versus single classifiers. a, PMd
predicts choices slightly better than M1during stimulus presentation using a
single classifier per epoch (monkey H). Mean prediction

accuracy (Supplementary Methods 12.3) over time + s.e.m. across sessions.
Black dots denote time bins for which predictionaccuracy was significantly
different between the two areas (two-sided Wilcoxon signed-rank test, P< 0.05
Holm-Bonferronicorrection for multiple comparisons). Samedataasinc,d
(dark traces). Datafrom17 sessions (16,468 trials). b, Same as a, but using a
different classifier for each 50 ms window. Same dataasinc, d (light traces).
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go epochsbutnot for reach epoch for PMd (monkey H). Same trialsand
statistical conventionsasa. Average predictionaccuracy +s.e.m.across
sessions for PMd using asingle classifier (trained on dataacross all time points
withinan epoch) or multiple classifiers (anew decoder trained for every 50 ms
window) perepoch.Inthedotsandgo cue periods, performanceis nearly
identical with single versus multiple classifiers, reflecting the stability of
choicerepresentation during these periods. In contrast, multiple classifiers
(trained for every time point) perform better during the movement period
when choicerepresentation changes rapidly with time. d, Equivalent toc, but
for M1.e,Same as ¢, but for monkey F. Data from 15 sessions (15,286 trials).
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Extended DataFig. 4 |Neural population choice predictionaccuracy
calculated offline onsingle trials when applying classifiers across epochs.
a, Only dotsand go classifiers perform well across epochs. Average prediction
accuracy (see Supplementary Methods 12.3) over time £ s.e.m. (across
sessions) formonkey H for decoders trained in the targets (cyan), dots (dark
yellow), go (magenta) and reach (black) periods. If the choice subspaces for two
independent epochsare similar, the decoder fromone epoch ought to
accurately predict choiceinthe other epoch. Dots decoder performs well
duringgo period and vice-versa. Targets and reach decoders perform poorly
across otherepochs. Datafrom17 sessions (16,468 trials). b, Equivalent to a,

but for monkey F. Same conventions apply. Datafrom 15 sessions (15,286 trials).
¢, Summary of performance difference between single and multiple classifiers
within each epoch. Average performance difference between within-epoch
classifierand across-epoch classifiers for each of the epochs plottedina (same
sessions). Error bars correspond to +s.e.m. across sessions. Zero difference
corresponds to the performance of the classifier trained and tested within the
same epoch.d, Sameas c, for monkey F. For both subjectsin the dots and go
periodsthelossindecodingaccuracyacrossepochs was very small, suggesting
similar choice representationin both periods.
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Extended DataFig. 5| Choice predictionaccuracy for correctandincorrect
trialsasafunctionof coherence. Choice prediction accuracy obtained from
real-timereadout for correctandincorrecttrials for eachlevel of coherence.
Predictionaccuracy during the dots epoch for each coherence levelis plotted
forcorrect (black) and error (magenta) trials. Red dashed line corresponds to
chancelevel. Insets show total number of correct (C) and error (E) trialsused in
theanalysis (correctandincorrect designation was randomly assigned for 0%
coherence stimuli). Data for monkey Hand F are shownin top and bottom

panels, respectively. Mean prediction accuracy for error trials after neural
latency (180 ms after stimulus presentation) is outside (and lower than) the 95%
CIfor correcttrials for1.6%,3.2%, 6.4%,12.8% and 25.6% coherences for monkey
Hand for12.8%,25.6% and 51.2% coherences for monkey F (1,000 bootstrap
iterations). Results for the highest coherence for each monkey should be
interpreted carefully due to the extremely low number of error trials for these
conditionsresulting from excellent behavioural performance. (Dashed pink
linesrepresentindividual error trials at the highest coherence for monkeyF.).
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Extended DataFig. 6 | Real-time decoding: performancereliability,
decoder weights, and Mu and Sigmasstability. a, Decoding performanceis
stableacross sessions. Mean predictionaccuracy late in the stimulus
presentation (600-1,200 ms) across all sessions for monkey H (top panels) and
monkey F (bottom panels). D1-D23 denote different decoders (sets of beta
weights) used for the recorded sessions. For monkey H the same decoder (D1)
was used for the first 14 sessions. The breaks on the x axis correspond to
sessions that occurred onnon-consecutive days. b, Real-time decoder 8
weights. fweights during the dots period (left panel) ranked by absolute
magnitude for an example decoder (D1 from monkey H) used in real-time

experiments. Channels with no or little choice predictive activity during this
period had their weights set to zero using LASSO regularization to prevent over
fitting. Delay period and post go cue Sweights are shownin the middle and
right panels respectively.c, Muand Sigmamatrices are very stable over dozens
of sessions - monkey H. Average spike counts within a 50-ms window (Mu, left
panel) and standard deviation of spike counts (Sigma, right panel) are plotted
asafunction of channel (y axis) and trial (x axis) for the sessions comprising
closedloop experiments1and 2 for monkey H.Red lines, breaks between
sessions.d, Sameasc, for monkey F.
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Extended DataFig.7|Validation of putative changes of mind. a, Choice
predictionaccuracy forall trials collected during the CoM detection
experiment. Trials were splitin 6 quantiles sorted by DV magnitude (absolute
value) at termination. Prediction accuracy and median DV magnitude were
calculated and plotted separately for each quantile (blue line with black data
points). Blue error bars show standard error of the mean for abinomial
distribution. Dashed black line shows predicted accuracy fromlog-odds
equationusedto fitthe DV model, and red dashed line shows chance level. Left:
Datafrom 985 CoM trials (164 trials per condition) from monkey H. Right: Data

from1,727 CoMtrials (287 trials per condition) from monkey F. b, CoM
frequency asafunction of coherence.Same as Fig. 3c for individual monkeys.
¢, CoMfrequency asafunction of coherence and direction. Same as Fig. 3d for
individual monkeys. Median corrective and erroneous CoM counts: 530 and
242 for monkey Hand 1,046 and 443 for monkey F, respectively (Wilcoxon
rank-sumtest P<0.001).d, CoM frequency as afunction of timein the trial.
Same as Fig. 3e for individual monkeys. e, CoM time as a function of coherence.
Same as Fig. 3ffor individual monkeys. CoM time was negatively correlated
with stimulus coherence (monkey H: P=1.8 x10™7; monkey F: P=3.0 x107°).
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Extended DataFig. 8| Motion pulse effects over DV, and time. a, Average
changein post-pulse DV, time-locked to estimated Pulse Evidence
Representation Latency (PERL), mean subtracted. Same as Fig. 4c for individual
monkeys. PERL =170 ms (180 ms) for monkey H (F). b, Average change in post-
pulse DV for each DV boundary, time-locked to PERL, mean subtracted. Same as
Fig.4d forindividual monkeys. Minimum 1,507 (1,731) trials per condition
shown for monkey H (F). ¢, Residual behavioural pulse effects over [DVpgg, |
Same as Fig. 4e for individual monkeys. Minimum 501 (504) trials per condition
shown for monkey H (F). d, Residual neural pulse effects over |DV;g, |. Same as
Fig. 4fforindividual monkeys. e, Residual behavioural pulse effects over time.
Same as Fig. 4g forindividual monkeys. Minimum 1,122 (1,217) trials per
conditionshown for monkey H (F). f, Residual neural pulse effects over time.
Same as Fig. 4h forindividual monkeys. g, Pooled residual behavioural pulse
effects over signed DV'p, (Supplementary Methods 16.1, step 4). Black: mean

residual pulse effects on choice for trials in each DV'y, bin, £s.e.m.; asterisks
denotessignificantly non-zero means at 95% confidence (Supplementary
Methods16.1). Blue: nonlinear regression model fit (MATLAB fitnlm function)
of the residuals to a Gaussian over DV'y,, including the Pvalue (two-sided
t-statistic) for the fit amplitude coefficient. h, Pooled residual neural pulse
effects over signed DV, . Black: mean residual pulse effects on ADV for trials
ineach DV'y, bin, +s.e.m.; asterisks denote significantly non-zero means at
95% confidence (Supplementary Methods 16.1). Blue: nonlinear regression
model fit (MATLAB fitnlm function) of the residuals to a Gaussian over DV'pp,,
including the Pvalue (two-sided ¢-statistic) for the fitamplitude coefficient.

i, Residual behavioural pulse effects over DV'y,, single subjects. Same as g, for
individual monkeys. Minimum 149 (151) trials per condition shown for monkey
H (F).j, Residual neural pulse effects over DV'yy, single subjects. Same as h, for
individual monkeys.
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Extended DataFig. 9| Correlation analysis between DV and stimulus
motion energy (ME). a, Correlationbetween ME and DV across coherences -
monkey H. Proportion of variance explained when regressing DV as afunction
of signed stimulus coherence (grey) or ME. Each green trace correspondstoa
separateregressionbetween DV and ME, offset by 180 ms to compensate for
neuralresponse delay (Supplementary Methods 14). Darker traces correspond
toregressionsin which ME was averaged over alonger period of time within
eachtrial. Risesto peakin greentraces appear right-shifted by approximately
60 ms due toedge effects fromfiltering ME at the beginning of each trial.
Acrossall coherence levels ME and signed coherence explain alarge fraction of
DVvariance.b,Sameasa, formonkeyF. ¢, Correlationbetween ME and DV
within each signed stimulus coherence level - monkey H. Proportion of
variance explained when regressing DV for each time point and within each
level of signed coherence as afunction of the ME (offset by 180 ms; see a).
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Within eachlevel of signed coherence, the DV fluctuations are not explained by
the ME traces.d, Same as ¢, for monkey F. e, Correlation between ME and DV
slope during putative changes of mind within each signed coherencelevel -
monkey H. Proportion of variance explained when regressing signed DV slope
during the CoM for each level of signed coherence as afunction of ME. ME was
averaged over the100 ms preceding the CoM, offset by 180 ms. DV slope was
calculated over a100 ms window centred around the zero-crossing defining
the CoM. Within eachlevel of signed coherence, the direction and magnitude
ofthe CoM zero-crossings are not explained by ME. Pvalues displayed are
uncorrected (linear regression); none of the fit coefficients are significantly
non-zero after correction for multiple comparisons. Data from 985 CoM trials
frommonkey H.f,Same as e, for monkey F. None of the fit coefficients are
significantly non-zero after correction for multiple comparisons. Data from
1,727 CoM trials from monkey F.
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long durationstimuli. a, Average DV derivative as a function of time and
coherence, and choice (correct trials only) - monkey H. Same dataasina, but
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Sample size Sample sizes were chosen based on our labs' experience and standards in the field. No sample-size calculations were performed prior to
experimentation. The excellent decoding performance achieved even with regularization (effectively removing many neural recording
channels from the decoder) shows that the neural population data, with more simultaneously recorded channels than most
neurophysiological studies in primary motor and dorsal premotor cortex, were highly over-powered. The effect size of the motion pulses
(particularly neural effect size) was unknown before experiment 3 was performed. Trial count targets for this experiment were based on the
effect sizes and sample sizes used in prior psychophysical and electrophysiological studies with similar motion pulses (Kiani et al. 2008, Huk &
Shadlen 2005).

Data exclusions  Unless explicitly described, behavioral data without neural recordings are not reflected in the main body of the manuscript; we only report
behavioral data during neural recordings. Any extremely noisy neural recording channels were deactivated at the beginning of a session, and

all other channels were used in this study. Additional criteria for excluding individual sessions or trials from analyses are detailed in Methods
sections 8 and 16.

Replication All data collection and analyses were carried out in two subjects and were generally consistent as presented in the article; no additional
replications were attempted.

Randomization  Trial parameters (including stimulus difficulty, stimulus direction, stimulus duration, pulse direction, delay duration, and DV boundary values)
were randomly assigned.

Blinding Blinding was not relevant for this study because trial parameters within each experiment were automatically randomly assigned and
interleaved without cues (subjects could not anticipate the parameters imposed on a given trial, and experimenters did not autonomously
control the parameters used on a given trial).
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Laboratory animals The study used two male Macaca mulatta monkeys (ages 8-10 and 12-14 years old over the course of the experiments for monkeys H
and F, respectively).

Wild animals The study did not involve wild animals.
Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All training, surgery, and recording procedures conformed to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by Stanford University Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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